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Part 1

e Part 1: Federated Learning Introduction
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Federated Learning

* Federated Learning (FL) Server @ Initialized model
aims to collaboratively
train a machine learning
(ML) model while keep
the data decentralized.
Client Client Client q

and statistics. PMLR, 2017.

@ PennState McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence
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Federated Learning

* Federated Learning (FL) Server
aims to collaboratively
train a machine learning
(ML) model while keep
the data decentralized.

Local Model
Training

Client Client Client Client

and statistics. PMLR, 2017.
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Federated Learning

* Federated Learning (FL) Server { Model }
aims to collaboratively Aggregation

train a machine learning
(ML) model while keep
the data decentralized.

Client Client Client Client

McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence 10
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Federated Learning

* Federated Learning (FL) Server @ Aggregated model
aims to collaboratively

train a machine learning
(ML) model while keep
the data decentralized.

4 )

We would like the final aggregated model to
be as good as the centralized solution
(ideally), or at least betier than what each
client can learn on its own

Client Client Client Client

11

@ PennState McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence

and statistics. PMLR, 2017.



Taxonomy

e Cross-device vs. Cross-silo FL
e Number of clients

e Vertical vs. Horizontal FL
* Feature and sample

* Server-orchestrated vs. Fully-decentralized FL
e Central server

@ PennState




Cross-device vs. Cross-silo Federated Learning

|
|
Cross-device : Cross-silo

10% — 20%
or smaller

[ Active Ratio ]100%

! '-'3?9 ':c':' Hh

1. 2-100 clients

2. Medium to large dataset per client

3. Reliable clients, almost always available
4. Clients are typically honest

Qo000000a0000000

1. Massive number of clients (up to 101°)
Small dataset per client (could be size 1)
Limited availability and reliability

Some clients may be malicious

000
=

bR
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Horizontal vs. Vertical Federated Learning

(a) Horizontal federated learning

* Horizontal FL;:
Client A ClientB

 Same feature space < x, v y v

. ?fferelnt samrk))le s;(pace h » . . . A . . -

* Example: two banks may have different users ) 5 -
from different regions, but their features can be = = . . based FL
same, e.g., job, age, gender, and credit score. 3 6 . .

e Vertical FL: (b) Vertical federated learning

* Different feature space ClientA Client B

e« Same sample space i X4 Xs Y

. ] III H

 Example: a group of users have Facebook accounts and Feature-
Amazon accounts. Facebook and Amazon have different 2 | | B . . based FL
features of the same group of users. q | | B 1

@ PennState Yang et al. " Federated machine learning: Concept and applications." ACM Transactions on Intelligent Systems and

Technology (TIST), 2019.




Server-orchestrated vs. Fully decentralized Federated Learning

Fully
decentralized FL EH
=

Server-
orchestrated
FL

DDDDDDDDDDDDDDDD

Server-client communication
2. Global coordination, global aggregation
3. Server is a single point of failure and may
become a bottleneck

@ PennState
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Client-to-client communication
No global coordination, local aggregation
Naturally scales to a large number of clients




Core Challenges of Federated Learning

« Communication Efficiency
Server

* Privacy Concerns ' “

, | T

* Heterogeneity

* Data/Statistical Heterogeneity
‘) * Model Heterogeneity
* System Heterogeneity

Client Client Client Client

T
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Data/Statistical Heterogeneity

IID dataset [ Non-IID dataset h
! } ¢ ¢
4 N N | N 3
03|30/ g 06 OS5 5
Independent | [ ¢/ 3 W] ¢ $ & d |17 48 0] Lorge state
and Identically 74 7 . B st
Distributed 2S5 g 5 A9 O 4 f ; ™ . y .
9 6 [
. AN N QN AN ) o HES -
lID vs. non-1ID for MNIST dataset Patient geographical distribution across states in US
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Model Heterogeneity

Enhance the performance of each client model
through collaborative learning without modifying client
model structures

Train a large
| global model with
G heterogenous
clients
Sub- g -
models 3 -
of G ©

i
=l

Sub-model training

@ PennState
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System Heterogeneity

Subsample Devices Subsample Devices

PRy - Pt 77
o /7 - /7
P .. Send Model 7 . /
— /
~ \ (NN} / fraining Updates “ 2 Send the VR /
/ Send the 7 Global Model /
4G D Global Model R Training  /
’/ Device Failure
- Q ([TH] Training x

Devices may vary in terms of network connection, power, and hardware. Moreover, some of the devices may
drop at any time during training.

@ PennState Li et al. " Federated Learning: Challenges, Methods, and Future Directions." IEEE signal processing magazine, 2020.




A Baseline Algorithm: FedAvg

* Each client k holds a dataset D, of n;,

samples Server
*letD =Dy U:---UDg bethe join ‘. |
dataset and n = ), n; the total number
of samples
« Empirical risk minimization: $ @ @ $
. \ ... Y %
Ng
F(6;D) = ) —F(0;Dy) Fy(8;Dy) = 6;d
;n «(6:D0)  F(6;Dy d;kf( ) 01 Dz D,H DK
6 € RP are model parameters Client 1 Client 2 Client K-1 Client K

@ PennState McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence

and statistics. PMLR, 2017.




FedAvg

Algorithm FedAvg (server-side)
Parameters: client sampling rate p

Algorithm ClientUpdate(k, 6)
Parameters: batch size B, number of local

initialize 0 steps L, learning rate n
for each round t=10,1,... do

St < random set of m = [ pK] clients
for each client k € & in parallel do
0, + ClientUpdate(k, 0)

Ne
0 < Z/’(’ESt n 9}?

for each local step 1,...,L do
B < mini-batch of B examples from Dy,

0 — 0 — %77 > den VI(0;d)
send 6 to server

e ForL =1andp =1, itis equivalent to classic parallel SGD: updates are aggregated, and the
model synchronized at each step

 For L > 1: each client performs multiple local SGD steps before communicating

and statistics. PMLR, 2017.

@ PennState McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence



Part 2

e Part 2: Data/Statistical Heterogeneity
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Approaches

* Regularization
* FedProx
* Clustering

* Data Augmentation

* Multimodal Disentanglement

@ PennState




FedProx

* Drawbacks of FedAvg

e Different devices in federated
networks often have different
resource constraints in terms of the
computing hardware, network
connections, and battery levels

* Unrealistic to force each device to
perform a uniform amount of work

Running the same number of local epochs for all
clients

Algorithm FedAvg (server-side)
Parameters: client sampling rate p

Initialize @
for each roundt=0,1,... do
St < random set of m = [pK] clients
for each client k € S; in parallel do
0, — ClientUpdate(k, )

Nk
0 « Zfeest Ok

Algorithm ClientUpdate(k, 6)
Parameters: batch size B, number of local
stepdlearning rate n

for each local step 1,...,L do
B < mini-batch of B examples from D,

0 < 0 — Fnd qep VIO d)
send 6 to server

@ PennState Li et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2

(2020): 429-450.



FedProx

* Add a proximal term to the local subproblem to effectively limit the
impact of variable local updates

min by (w; w') = Fi(w) + gH'w — QHZ

The aggregated model
from the server at time t.

* |t addresses the issue of statistical heterogeneity by restricting the local updates to be closer
to the initial (global) model without any need to manually set the number of local epochs.

[t allows for safely incorporating variable amounts of local work resulting from systems
heterogeneity.

(2020): 429-450.

@ PennState Li et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2



- Z
FedProx min hy,(w; w*) = Fi(w) + 5 [lw — w’|]

Algorithm 2 FedProx (Proposed Framework)

Input: K, T, p, v, w’, N, pp, k=1,--- ,N

fort=0,---,T—1do 4 h
Server selects a subset S; of K devices at random (each K: Selected clients
device £ is chosen with probability py.) I Communication round
Server sends w! to all chosen devices u, v+ Hyperparameters

0. . .
: : Initialized model
Each chosen device £k € S; finds a wffl W_ )
No number of . . £ e . ) N: # of clients
== which is a <;-inexact minimizer of: w; ~ Ny
local steps L : ¢ 0 112 Di = —
arg min,, hy(w; w*) = Fi(w) + §||lw — w*|| n
Each device k € S; sends w; '~ back to the server ~ g
Server aggregates the w’s as w'™ = & 37, .o wi
end for

(2020): 429-450.

@ PennState Li et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2
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Figure 1. FedProx results in significant convergence improvements relative to FedAvg in heterogeneous networks. We simulate

different levels of systems heterogeneity by forcing 0%, 50%, and 90% devices to be the stragglers (dropped by FedAvg). (1) Comparing
FedAvg and FedProx (1 = 0), we see that allowing for variable amounts of work to be performed can help convergence in the presence
of systems heterogeneity. (2) Comparing FedProx (¢ = 0) with FedProx (u > 0), we show the benefits of our added proximal term.
FedProx with g > 0 leads to more stable convergence and enables otherwise divergent methods to converge, both in the presence of
systems heterogeneity (50% and 90% stragglers) and without systems heterogeneity (0% stragglers). Note that FedProx with 4 = 0 and
without systems heterogeneity (no stragglers) corresponds to FedAvg. We also report testing accuracy in Figure 7, Appendix C.3.2, and

show that FedP rox improves the test accuracy on all datasets.

(2020): 429-450.

@ PennState Li et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2




FedProx
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Figure 7. The testing accuracy of the experiments in Figure 1. FedProx achieves on average 22% improvement in terms of testing
accuracy in highly heterogeneous settings (90% stragglers).

PennState Li et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2

(2020): 429-450.




Approaches

* Regularization
* FedProx

* Clustering
* FedSEM

* Data Augmentation

* Multimodal Disentanglement
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FedSEM
* Existing FL approaches

* Update a single global model to @\ @
capture the shared knowledge of all e \
users by aggregating their gradients, (@ @@
regardless of the discrepancy B 2

between their data distributions.

e Solution

* A mixture of multiple global models
could capture the heterogeneity
across various clients if assigning
the client to different global models
(i.e., centers) in FL.

@ PennState Long et al. "Multi-center federated learning: clients clustering for better personalization." World Wide Web 26.1

(2023): 481-500.




FedSEM

* The multi-center FL problem can be
formulated as joint optimization @ - Federated Loarming Server 77

problem: | — *

The parameters of the

aggregated model for Client clustering Model aggregation
min Z 87} L M D W )‘l‘ CIUSter-k Personalized ——-——@-——-——-———-———-——=——-———-——-- _ 1
W frF Wy i 1 dec(ijsi?n\making Exchanging
Mogel ™ models
A ” -
= Z > Dist(w;, W),
m

k=1 1=1

Multi-center assignment at the server end.

Fig. 1: Overall framework of multi-center Federated Learning.

* On each node-i: optimize w; , while fixing others;
* On the server: optimize »*) , Wk while fixing all the local models.

@ PennState Long et al. "Multi-center federated learning: clients clustering for better personalization." World Wide Web 26.1

(2023): 481-500.




FedSEM

Algorithm 1 FeSEM - Federated Stochastic EM

I:
2:
3:
4

R - AR

10:
11:
12:
13:

Initialize K, {W; }7,, {WHF
while stop condition is not satisfied do

E-Step: )
Calculate distance d;; < Dist(W, W(k)) Vi, k
(k)

Update cluster assignment 7,

M-Step:
Update W*) using Tgk) and W; (Eq. 9)
for eachclusterk =1,... K do
for i € C), do
Send W) to device i
W; < Local_update(i, W %))
end for
end for

using d;;. (Eq. 8)

14: end while

Personalized
decision making
model "

Fig. 1: Overall framework of multi-center Federated Learning.

Algorithm 2 Local_update

1 — device index
W) — the model parameters from server
W; — updated local model
Initialization: W; < W ()
for N local training steps do
Update W; with training data D; (Eq. 7)
end for
Return W; to server

@ PennState

(2023): 481-500.

Long et al. "Multi-center federated learning: clients clustering for better personalization." World Wide Web 26.1




FedSEM

Dataset FEMNIST Dataset FedCelebA

Metrics(%) Micro-Acc | Micro-F1 | Macro-Acc | Macro-F1 | Metrics(%) Micro-Acc | Micro-F1 | Macro-Acc | Macro-F1
NoFed 79.0+2.0 | 67.6+0.6 | 81.3+1.9 51.0+1.2 NoFed 83.8+1.4 | 66.0+0.4 | 83.9+1.6 67.24+0.6
FedSGD 70.1+2.2 | 612434 | 71.5+1.8 46.74+1.2 FedSGD 75.7+2.3 | 60.7+£2.4 | 75.64+2.0 55.6+£2.6
FedAvg [10] 84.942.0 | 67.940.4 | 84.9+1.6 | 454+1.9 FedAvg [10] 86.9+0.5 | 78.0+£1.0 | 86.1+0.4 | 54.2+0.6
FedDist [65] 79.3+0.8 | 67.5+£0.5 | 79.8+1.1 | 50.5+0.5 FedDist [65] 71.8+0.9 | 61.0£0.8 | 71.6+1.0 | 61.1£0.7
FedDist+W$S 80.4+0.8 | 67.24+1.6 | 80.6+1.2 | 51.7+1.1 FedDist+WS 734+1.7 | 59.3£0.9 | 73.4+£1.9 | 50.3£0.5
Robust(TKM) [12] 78.44+1.0 | 53.1+0.5 | 77.6+0.7 | 53.6+0.7 Robust(TKM) [12] 90.1+1.3 | 68.0=0.7 | 90.1£1.3 | 68.3%1.1
FedCluster [15] 84.1+1.1 | 64.3+1.3 | 84.24+1.0 | 64.4+1.6 FedCluster [15] 86.7+0.7 | 67.8£0.9 | 87.0+0.9 | 67.8+1.3
HypoCluster(3) [16] || 82.5+1.7 | 61.3+0.6 | 82.2+1.3 | 61.64+0.9 HypoCluster(3) [16] || 76.1£1.5 | 53.5+1.0 | 72.7£1.8 | 53.8+1.9
FedDane [14] 40.04£2.9 | 31.843.1 | 41.7+£2.4 | 31.7+1.6 FedDane [14] 76.6+1.1 | 61.8£2.0 | 75.9+1.0 | 62.1+2.2
FedProx [13] 72.6+1.8 | 62.8+1.6 | 743+2.1 | 50.6+1.2 FedProx [13] 83.8+2.0 | 60.9+1.2 | 84.9+1.8 | 65.7+1.2
FeSEM(2) 84.8+1.1 | 65.5+0.4 | 84.8+1.6 | 52.0+0.5 FeSEM(2) 89.1+1.3 | 64.6+1.0 | 89.0+1.3 | 56.0+1.3
FeSEM(3) 87.0+£1.2 | 68.5+2.0 | 86.9+1.2 | 41.7£1.5 FeSEM(3) 88.1+1.9 | 64.3+0.8 | 87.5+2.0 | 55.9+0.8
FeSEM(4) 90.3+1.5 | 70.6+0.9 | 91.0+1.8 | 53.44+0.6 FeSEM(4) 93.6+2.7 | 748t1.5 | 94.1+2.2 | 69.5+1.1
FeSEM-MA(3) 90.4+1.5 | 71.4+0.5 | 87.0+£2.0 | 64.3+0.5 FeSEM-MA(3) 84.5+0.8 | 64.1£0.7 | 85.1+£1.0 | 63.0+1.3

Table 3: Comparison of our proposed FeSEM(K) algorithm with the baselines on FedCelebA.
Note the number in parenthesis following “FeSEM™ denotes the number of clusters, K.

Table 2: Comparison of our proposed FeSEM(K) algorithm with the baselines on FEMNIST.
Note the number in parenthesis following “FeSEM” denotes the number of clusters, K.

Long et al. "Multi-center federated learning: clients clustering for better personalization." World Wide Web 26.1
(2023): 481-500.

@ PennState
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Fig. 3: Convergence analysis for the proposed FeSEM with different cluster number (in
parenthesis) in terms of micro-accuracy.

@ PennState Long et al. "Multi-center federated learning: clients clustering for better personalization." World Wide Web 26.1

(2023): 481-500.




Approaches

* Regularization
* FedProx

* Clustering
* FedSEM

* Data Augmentation
* FedCovid

* Multimodal Disentanglement
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FedCovid

* Predicting Covid-19 vaccination with
federated learning using electronic
health records (EHR)

e Each state in US is a client.

Electronic

e Challenges Health
 EHR data are heterogeneous. Record

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.



FedCovid

Table 1: Data statistics of the extracted EHR dataset.

. . . . . . Patient Count 6,026 Moderna 3,355
¢ PredICtlng COVId'lg VaCCInatlon Wlth Positive Patient Count 1,097 Pfizer-BioNTech 2,159
. . . Negative Patient Count 5,429 Jansse 1,012
federated learning using electronic Male 1761 1CD Code Count 803
Female 4,765 State C 29
health records (EHR) e e o

e Each state in US is a client

N
¢ Cha | |e nges ¥y I“- ?r'-————___ '——;—4 MN {
* EHR data are heterogeneous. i

e The size of EHR data stored for each
client is unequal.

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.




FedCovid

* Data Imbalanced Heterogeneity

Table 2: Training and testing data statistics.

Training | Testing
/t Patient 5,006 4 Patient 1,520
4/t Positive Patient 879 |/ Positive Patient 218
4+ Negative Patient 4,127|/ Negative Patient 1,302

I train positive Hll train negative Bl test positive Il test negative

=
Qo
o
o

800
600
400 i

200 -

Number of Patient

CANY FLOHTX KY MI WI AZGA IL NJ MN IA WA IN LA PATN VA SC ORCO AL NCMOMD UT OK
State

Fig. 2: Training and test data label ratio for each state.

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.




FedCovid

~
] Ol [} | Client Size
Server . Client Slje—il“’ﬂl‘e. 1
Update Global Model [« Arameter Aggregation O -~ O -~ [ |ClientWeights
O, [1; | Client Models
Download =
=
Gender . - . 1 =
Vacei °o E — Upload =
accine — = EEC Data Augmentation Hybrid Loss g
Brand Egz ]‘ :
|j+ _ Cross Entropy =
by g i Loss 0 0O \mm =
. . — ® ) =
Local Visit 1 - Visit I:'L ; N{LP . 4{ ’:‘ : : =)
Update . ) A o, ~D < dE > | =
P Visit Data — ; Sigmoid "| Gaussian |- ‘ L —{ Lk 0O %
g H @ Noise [ Margin Loss : 5
® (Positive)
Adaptive + Lk Ly
Age . ¥ J
a Embet.ldlng
i 1‘ = Fusion Global Model 5 —7* Regularization Local Model
I > = > . Parameters &
-0 “’ : Client Size
Patient Representation Learning Data Augmented Hybrid Local Training
- vy

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.




FedCovid

Local
Update

@ PennState

Gender Qd‘ 2
Vaccine -~ g e hfc
Brand ;‘? '
Visitl o VisitM, 3 MLP
] [ ] a - hl , — @ —
Visit Data — = Sigmoid
E A
o E
. a
Adap.tive
Age Embedding
o, G Fusion
YO o =
-0-> =

Patient Representation Learning

Embedding Numerical and Categorical Features
b, = MLPo(af); B, = MLP.(gf. 0f).

. 2 . 2
Age information Brand information
Embedding Sequential Visit Data
hi, = My (V)
o

Visit information
Adaptive Embedding Fusion

k! k1, k kE _ [hE k k
hi = Wih7, hy = [hz’,a’hi?cfh'

7,V

where W¥ is a learnable weight matrix. We then learn a weight for each element
. ro. : : L
in hf via a Sigmoid function, i.c.,

oF = Sigmoid(hf‘r).

Finally, the element-wise multiplication o is used to generate the patient repre-
sentation as follows:

: ki k!
P?Z‘f’ih?-

Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.



FedCovid

Data Augmentation

p¥
°
L ]
°

k
Ai

Gaussian

Noise
(Positive)

I
Pi+
()
(X
o

EX)

Hybrid Loss

, Cross Entropy

Loss

+

Pair-wise

Global Model wy

Margin Loss

+

— Regularization

Upload

1

wy Nl
— Wi N

Wp NB

Local Model

Client Size

Data Augmented Hybrid Local Training

@ PennState

Wang et al.

Parameters &

 EHR Data Augmentation
* Hybrid Local Training

£F = L CE(f(PH).y%) + 2SCE(f(PE ). vh).

© Ny | N,
Representation matrix of the augmented positive data
Pair-wise margin loss:

) Ni+N,F
b= ——— > max(d(pf.pt,) — d(pf.pl ) +0.0).
Tk + N —

Final hybrid loss:

h A o
L:k: — Ef + )\’rnﬁf}; j\;ﬂ Hwk: — WQH
W

4

Number of model parameters

“Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.



Ny Ny =+ Ng | Client Size
Server Client Size—aware. i
Fed COV| d Update Global Model W, Parameter Aggregation B -~ B. -~ PBs |Client Weights
wy Wy ... wg | Client Models

* Server Update: Client Size-aware Aggregation
B

1 | | log(N Number of model
S B wi, i = o

W, — — Pl — B NE
g S22 log(N;) parameters

k=1

* Ordinal Training Strategy:

o First train clients with larger size and then train small
[} Lorge state Clients

] small state
- o For the small client training, we lower the number of
training epochs and learning rate.

We try to lower the negative effect caused by the smaller clients.

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.




Table 4: Performance comparison

FedCOVId Setting Algorithm F1 Score Cohen’s Kappa PR-AUC
Central Training CNN 0.4855 0.4279 0.4270
Transformer 0.4680 0.3842 0.4382
FedAvg 0.4081 0.3138 0.1376
Federated Training FedProx 0.4083 0.3129 0.1368
Per-FedAvg 0.3722 0.2669 0.1361

FedCovid 0.4669 0.3697 0.3156

Table 5: Ablation study

Approach F1  Cohen’s Kappa PR-AUC
EHR Concatenation in Section |5.2 0.4365 0.3356 0.2832
CE Loss Only in Section |5.3 0.4150 0.2775 0.2204
Average Aggregation in Section (5.4 0.4486 0.3093 0.2996
Normal Federated Training in Section |5.8 0.4306 0.3266 0.2817
FedCovid 0.4669 0.3697 0.3156

Learning and Knowledge Discovery in Databases (ECML-PKDD). 2022.

@ PennState Wang et al. “Towards federated covid-19 vaccine side effect prediction.” Joint European Conference on Machine



Approaches

* Regularization
* FedProx

* Clustering
* FedSEM

* Data Augmentation
* FedCovid

* Multimodal Disentanglement
* Harmony

@ PennState




Harmony

* Federated multi-modal sensing systems

Harmony

AD Digital Biomarkers:
"taking medication"
"using mobile phone"
"sleeping"

wge §
Depth Audlo Radar (@A)  ful O I||
""" [ |

Home 1 Sensors COT}:;:mg 4G Module

Figure 1: A typical application scenario of multi-modal fed-
erated learning systems: Alzheimer’s Disease monitoring.

@ PennState Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”

Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and (MobiSys), 2023




The server clusters the nodes
according to the modality biases and

Multi-modal nodes train aggregates the classifier in each
Ha rmOny multiple single-modal networks. cluster.

Stage | Stage Il

( @ Federated Fusion by
Exploiting Modality Bias

[l -

|

[ ® Modallty-Wlse FL

Modality
Bias

L

1 r‘ " Unimodal Encoders R A

L [Bn A0 (s—[5) = &)1 o I __,@B;
G- G RED (B8R

All Nodes
(1 Disentangled Model Training Multi-modal @ Local Fusion

(2 Resource Allocation Nodes @ Measuring Modality Bias

@ PennState Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”

Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and (MobiSys), 2023




Harmony

* Disentangled Model Training: The multi-modal nodes will train
multiple single-modal networks rather than multi-modal fusion
networks.

e Parallel Unimodal Federated Learning: After disentangling the
training of multi-model models, all nodes will train and upload
single-modal networks in modality-wise FL

(3 Modality-Wise FL

———
o
kﬁ—JL—ﬁ——J

[EJ’J LB [ 'D {QJ e Node Update: The node cj will parallelly optimize (e.g., using
"5 Uidmadil Encoiler gradient descent methods) the model weight of M;. single-
k4 B modal networks based on its local data ({x;|Vi € Mg}, y).
c
[E — [I] O} (si) — SGD(P] (s7), (x(i),y)), i € M. (6)
e Server Update: The server will run M different threads for

= .
handling the model aggregation of different unimodal FL sub-
(1) Disentangled Model Training \_/ systems. For modality j € {1,2, ..., M}, if the model weights
of all nodes (where there are N;j nodes that have the data of
modality j) have arrived at the server, the server will perform
the model aggregation as:

(2) Resource Allocation

" (s)) = UniFL(®} (s)), ... D¢ (5)). (7)

@ PennState Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”

Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and (MobiSys), 2023




Harmony

* Measuring Modality Bias via Encoder Discrepancy: the multi-modal networks of
different nodes may show substantial bias toward different modalities. They
propose to measure and leverage such modality biases in different multi-modal
networks.

di (1) = dis(f] ye, () fone, ())- (9)

(3 Federated Fusion by
Exploiting Modality Bias

Here dis(-) measures the cosine distance of two weight vectors.

J

* Node 0 * MNode 2 * Node 4
+ Nodel + MNode 3 + MNode5

] [e) * Cluster-based Fusion Aggregation: the server <o p
il . . . . @
ok Erins 3 will cluster the nodes according to their modality g .
A biases and aggregate the classifier layers with each s
w06 *
cluster. ° "
| o First normalize the encoder discrepancy value £
\,A'mu-moaau ® Local Fusion of each modality among all nodes. © ea 08 08 10
Nodes (2 Measuring Modality Bias _ . H
8 o K means cluster: t.he server will ag_grggate the Figure 7: Visualization of encoder
classifiers of multi-modal nodes within the discrepancy vectors of multi-modal
nodes. The nodes are grouped into
same cluster. three clusters based on the encoder

@ PennState

discrepancy.

Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”
Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and (MobiSys), 2023




Harmony

S 4G Module

mmWave Radar

Microphone
Sy
LN |

Sensors
Depth Camera - :
_ Nvidia Nx Depth Image Radar Data Audio Data
(a) Our multi-sensor hardware prototype. (b) Home installations. (c) Examples of recorded multi-modal data.

Figure 8: Our real-world multi-modal sensor testbed for Alzheimer’s Disease monitoring. The nodes incorporating three sensor
modalities (depth, mmWave radar, and audio) are deployed in the homes of 16 elderly subjects.

=== |ocal 2@ MultiFL YN Harmony === Local X MultiFL U Harmony
wes UniFL @ FedHGB s UniFL  #9%9 FedHGB
_ _ 80
‘ Sensor combination %50 % % i ESwso i £
Set 1 2A, 2D, 2R, 10(A,D,R) 540 % N LS i LS §4o ; Q x N
Set 2 2(A,D), 2(D,R), 2(A,R), 10(A,D,R) o | EE : - e |§t E22 =
Set3 | 1A, 1D, 1R, 2(A,D), 2(D,R), 2(A,R), 7(A,D,R) 57 SN SR E N AN
Table 1: Selected sensor combinations on 16 nodes. A, D, R de- O Tsers sz ser3 O so 100
. . (1+3) (2+3) (1+2+3) Number of samples
notes Audio, Depth, Radar, respectively, and 7(A,D,R) means (a) Different modality sets.  (b) Different amounts of data.
seven nodes having three modalities. Figure 9: Accuracy performance on real-world multi-modal

data. Harmony outperforms by 20% in mean accuracy over
the baselines under various settings.

@ PennState Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”

Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and (MobiSys), 2023




Harmony
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Figure 12: Comparison of accuracy performance on different multi-modal datasets. Harmony consistently outperforms the

Dataset Modality Class Node Samples
USC Acc, Gyro 12 14 38312

MHAD Acc, Skeleton 11 12 3956

FLASH GPS, LiDar, Camera 64 210 32923

Table 2: Summary of the three multi-modal datasets.

E== Local PX¥ MultiFL SN Harmony
ssss UniFL 794 FedHGB
R0
S {
570 l ,Lilﬁ I%/IQ
g 3 TN ,°.>/ N
3001 | ZAN AN i N
& TN L l% N BN
25| BN ;Q 2N TN
740l BESON TEREN BESON SSSON
i = N %f%\ E:::?/Q =5 N
30 All Acc  Skeleton MM
(b) MHAD

state-of-the-art baselines for nodes with different data modalities.

@ PennState
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Ouyang et al. “Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training.”
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Approaches

* Regularization
* FedProx

* Clustering
* FedSEM

* Data Augmentation
* FedCovid

* Multimodal Disentanglement
* Harmony
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Part 3

* Part 3: Model Heterogeneity
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Model Heterogeneity

Enhance the performance of each client model
through collaborative learning without modifying client
model structures

Train a large
| global model with
G heterogenous
clients
Sub- g -
models sl
of G °

i
=

Sub-model training (partial heterogeneity)

@ PennState

Heterogeneous model aggregation (complete heterogeneity)




HeteroFL

Global model parameters 17/, * Based on different clients' capacity,
the server sends different sizes of
the models to the clients.

* HeteroFL does aggregation for each

part according to the client
/r\ participation.

ipwg’—l \ WP, ...
=1

m—mz;p

1

1 « _
szzazwﬁ VVzpl\sz:
i=1

Local model parameters I/Vf

Local model parameters W'f 1

W\ W2 = > wAw?

W, =Wl=WPu WP \WP)u---u W\ W)

Local model parameters W!._l

In this example, there are 6 clients including a large client,
2 medium clients, and 3 small clients.

International Conference on Learning Representations, 2021.

@ PennState Diao et al. “HeteroFL: Computation and communication efficient federated learning for heterogeneous clients.”



HeteroFL

 Computation
complexity levels

a 10 All the model
parameters
b 0.5
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d 0.125
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Figure 2: Interpolation experimental results for CIFAR10 (IID) dataset between global model com-
plexity ((a) a, (b) b, (¢) ¢, (d) d) and various smaller model complexities.

Diao et al. “HeteroFL: Computation and communication efficient federated learning for heterogeneous clients.”
International Conference on Learning Representations, 2021.




FedRolex

Model Aggregation Sub-model Need of Server Model Compatibility with

Heterogeneity Scheme Extraction Scheme Public Data Size Secure Aggregation
FedAvg [3] No = Client Model Yes
FedProx [4] No i i No = Client Model Yes
SCAFFOLD [5] No = Client Model Yes
FedBE [6] Unlabeled = Client Model No
FedGKT [9] No > Largest Client Model No
FedDF [10] Yes Knowledge i Unlabeled = Largest Client Model No
DS-FL [11] Distillation Unlabeled = Largest Client Model No
Fed-ET [12] Unlabeled > Largest Client Model No
Federated Dropout [13] Random No > Largest Client Model Yes
HeteroFL [14] Yes [ Partial ] Static No = Largest Client Model Yes
FjORD [15] Training Static No = Largest Client Model Yes
FedRolex (Our Approach) Rolling No > Largest Client Model Yes

Existing PT-based methods: The sub-models are extracted in ways (either random or static) such
that the parameters of the global server model are not evenly trained. This makes the server
model vulnerable to client drift induced by the inconsistency between individual client model and
server model architectures-a unique challenge of model-heterogeneous FL.

@ PennState Alam et al. “FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction.” 36th

Conference on Neural Information Processing Systems, 2022.




Global Server Model

FedRolex

* Model-heterogeneous with
rolling sub-model extraction.

* The aggregation still follows
the FedAvg-based approach, Round j+ 1
which covers the overlapping
and non-overlapping part.

Large-capacity Small-capacity
Client Model Client Model

@ PennState Alam et al. “FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction.” 36th

Conference on Neural Information Processing Systems, 2022.



FedRolex

* Two sub-model extraction strategies

Global Server Model Global Server Model

Round j

Round j+1

Small-capacity Large-capacity Small-capacity Large-capacity Global-model-capacity
Client Model Client Model Client Model Client Model Client Model
Random Sub-model Extraction Static Sub-model Extraction

@ PennState Alam et al. “FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction.” 36th

Conference on Neural Information Processing Systems, 2022.




FedRolex

* Global model accuracy

Table 3: Global model accuracy comparison between FedRolex, PT and KD-based model-
heterogeneous FL. methods, and model-homogeneous FL methods. Note that the results of KD-based
methods were obtained from [12]. For Stack Overflow, since KD-based methods cannot be directly
used for language modeling tasks, their results are marked as N/A.

Method High Data Heterogeneity Low Data Heterogeneity Stack Overflow
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
FedDF 73.81 (£ 042) 31.87(+0.46) 76.55 (£ 0.32) 37.87 (£ 0.31) N/A
KD-based DS-FL 65.27 (£ 0.53) 29.12(x0.51) 68.44 (£ 0.47) 33.56(x0.55) N/A
Fed-ET 78.66 (+ 0.31) 35.78 (+ 0.45) 81.13 (+ 0.28) 41.58 (+ 0.36) N/A
HeteroFL 63.90 (£ 2.74) 52.38 (+0.80) 73.19 (2 1.71) 5744(x042) 27.21 (£0.22)
PT-based  Federated Dropout 46.64 (£ 3.05) 45.07 (£0.07) 76.20 (£ 2.53) 46.40(x0.21) 23.46(£0.12)
FedRolex 69.44 (£ 1.50) 56.57 (= 0.15) 84.45 (£ 0.36) 58.73(x0.33) 29.22 (£ 0.24)
Homogeneous (smallest) 38.82 (£ 0.88) 12.69 (£ 0.50) 46.86 (£ 0.54) 19.70(x0.34) 27.32(£0.12)
Homogeneous (largest) 75.74 (£ 0.42) 60.89 (= 0.60) 84.48 (+ 0.58) 62.51(x0.20) 29.79 (£ 0.32)

@ PennState

Alam et al. “FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction.” 36th
Conference on Neural Information Processing Systems, 2022.




Summary of Partial Heterogeneity

e Strong constraints of the clients’ models’ structures. Clients may
not be able to utilize their models freely. The core ideas are:
e Contribute to one global model by partial training at different clients.

 Share the identical part, which is used as the carrier of the information
exchange.

@ PennState



Model Heterogeneity

Enhance the performance of each client model
through collaborative learning without modifying client
model structures

Train a large
| global model with
G heterogenous
clients
Sub- g -
models sl
of G °

i
=

Sub-model training (partial heterogeneity)

@ PennState

Heterogeneous model aggregation (complete heterogeneity)




FedGH

Server < - - Sradient Descent _
RPanda gpanda : Panda
- - loss Do
® R RI9 —» Animal? : : : )
— o kel e Clients share the identical header and

have their own feature extractors.

e The header will be transmitted
between the server and the clients.

* The information of the classes and
their representation need to be
uploaded to update the global header.
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\ .l
A

X T

R

Client 1 Client 2

Figure 1: The workflow of the proposed FedGH approach.

International Conference on Multimedia, 2023.

@ PennState Yi et al. “FedGH: Heterogeneous Federated Learning with Generalized Global Header.” Proceedings of the 31st ACM



N =10,C =100% N =50,C =20% N =100,C = 10%
Method CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100
Standalone 93.13 62.80 95.39 62.38 92.92 55.47
Fed G H FedAvg 94.34 64.63 95.68 62.95 93.39 56.23
FML 92.39 61.58 94.55 56.80 90.36 50.16
FedKD 92.65 58.35 93.93 57.36 91.07 51.90
o
ReSU ItS LG-FedAvg 93.54 63.30 95.29 63.06 92.96 54.89
FD 93.63 - - - - -
FedProto 95.99 62.51 95.38 61.15 92.75 55.53
FedGH 96.33 73.62 95.69 65.02 93.65 56.44
CIFAR-10 (Non-IID:2/10) CIFAR-100 (Non-1ID:10/100)
704 Ay ALY N o wd S BRAINN S g I YT 2P VAR A SYpavant o aghed|
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@ PennState Yi et al. “FedGH: Heterogeneous Federated Learning with Generalized Global Header.” Proceedings of the 31st ACM
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FedGH

Server Gradient Descent

* The header only contains gonda  granda  ETTT oo ' panda
. . . . . — —dog . loss o
limited information, leadingto ~ ©@ [&* &Y —» el —> animar? <> (08

Riote R @ Cat

unsatisfactory performance.

* Uploading representations and
class labels may have privacy
concerns.

Client 1

Figure 1: The workflow of the proposed FedGH approach.

@ PennState Yi et al. “FedGH: Heterogeneous Federated Learning with Generalized Global Header.” Proceedings of the 31st ACM

International Conference on Multimedia, 2023.



pFedHR

* Public data usage ST

86%

= MNIST ®mSVHN = CIFAR-10 4% = MNIST =SVHN -CIFAl.l-lo | Pu bl |C Data
~ 82% — —
2 80%
= ESTT%:
o, H H
:ﬂ‘ﬁ 8% 10.15% 76%
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FedMD FedGH pFedHR FedMD FedGH pFedHR
(a) IID with labeled public dataset (b) Non-IID with labeled public dataset
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(c¢) IID with unlabeled public dataset (d) Non-IID with unlabeled public dataset

Training on the SVHN dataset with different public data.

@ PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on

Neural Information Processing Systems, 2023.




| Public Dataset ] Model Characteristics

Send to Clients

Approach
| W.Label W.o0.Label | Upload and Download Aggregation Personalization
FedDF[19] X v parameters ensemble distillation X
FedKEMF[20] X v parameters mutual learning v
FCCL [18] X v logits average v
p Fed H R FedMDI[17] v X class scores average v
FedGH [22] v X label-wise representations average v
pFedHR v v parameters model reassembly v
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@ PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on
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Layer-wise Server Update
Dem)ranosition ,,_Group 1 "\ (Section 3.1) Candidate 1
1
(Section 3.1.2) ! !
P 2 2 B 5
28 i H

Nt 2 Candidate 2
Function-driven "__Groupz -~ Rcasscjmbly 2 3 =
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. . I'““';““" (Section 3.1.2) 1T -5
" Layerwise Becomposition 1| LT 1T ——
* Function-driven Layer Grouping T

o Measure the distance between each layers via CKA (centered kernel alignment)
dis(Ly;, Ly ;) = (CKA(X};, X7 ;) + CKA(LY (X7,), L7 (X7 ) (3)

where X7, is the input data of Li’;, and L}, (X} ;) denotes the output data from L} ;. This metric
uses CKA(-, -) to calculate the similarity between both input and output data of two layers.

o Conduct K-means-style algorithm to group layers of B models into K clusters.

 Reassembly Candidate Generation
o All the operation types should be included
o All the defined functions should be included
o The layer order should follow the natural order

@ PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on

Neural Information Processing Systems, 2023.




Local Update
(Se: .2

g w@i
pFedHR Il

|
|
- 1 I Ve Similarity Calculation (Section 31.3) and Matching (Section 3.1.1
° Layer StItChlng Send to Clients : Pairl:{th;é%L pairz:{wf,éz},---,PairB:{wﬁét;
o We apply a simple MLP as the stitching layer to match the different dimensions of
two consecutive layers.

o The simple MLP can also control the number of the parameters and maintain more
information from the original models as much as possible.

e Similarity calculation

o We need to select the best fitting teacher to guide the local model learning at the next
communication round. In this case, we calculate the similarity of the logits from each pair
of the local models and the candidate models:

sim(w;', c;'"; D,) = sim(w}",¢;";D,) = Zcm(af(xp) o) (x,)),

P_

@ PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on

Neural Information Processing Systems, 2023.




pFedHR

e Client Update:

Let D,, = {(x!",y!)} denote the labeled data, where x!" is the data feature and y* is the coresponding
ground truth vector. The loss of training local model with knowledge distillation is defined as follows:

IDa|
> [CE(wi (x}'), y¥) + AKL(af (x}), &7 (xi)] 4 (6)

1=1

1
Jn — T~
Dy

where |D,,| denotes the number of data in D,,, w}'(x}") means the predicted label distribution, A is a
hyperparameter, KL(-, -) is the Kullback—Leibler divergence, and a' (x}') and &, (x!") are the logits
from the local model w}' and the downloaded personalized model w}', respevtively.

@ PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on

Neural Information Processing Systems, 2023.




pFedHR

* Experiments

PennState Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on
Neural Information Processing Systems, 2023.



Table 2: Performance comparison with baselines under the heterogeneous setting.

Public Dataset MNIST SVHN CIFAR-10

P FedHR Data | Model IMD NonIID| TD  NonIID| T1ID  Non-IID
FedMD [17] 903.08% 91.44% | 81.55% 78.39% | 68.22%  66.13%

Labeled | FedGH [22] 94.10%  93.27% | 81.94% 81.06% | 72.69%  70.27%

e Results pFedHR 94.55% 94.41% | 83.68% 83.40% | 73.88% 71.74%
FedKEMF [20] | 93.01% 91.66% | 80.41% 79.33% | 67.12%  66.93%

Unlabeled | FCCL [18] 93.62% 92.88% | 82.03% 79.75% | 68.77%  66.49%

pFedHR 93.89% 93.76% | 83.15% 80.24% | 69.38%  68.01%

Table 4: Homogeneous model comparison with baselines.

% é E E § Model Dataset MNIST SVHN CIFAR-10
= =2} L= c;n 0Q¢! "Setting D  NonlID| 1ID  NonlID | IID  NonIID
= mNE e s FedAvg [4] 91.23%  90.04% | 53.45% 51.33% | 43.05%  33.39%
ERE AR 2 [2] |2 FedProx [2] 92.66% 92.47% | 54.86%  53.09% | 43.62%  35.06%
= \ Mi Per-FedAvg [26] | 93.23%  93.04% | 54.29%  52.04% | 44.14%  42.02%
o = = o PFedMe [27] 93.57%  92.00% | 55.01% 53.78% | 45.01%  43.65%
&/l |8 || |[Emzm0|[0) 8] D PFedBayes [28] | 94.39% 93.32% | 58.49% 55.74% | 46.12%  44.49%
s (S| [S] |8 8] [ L5 =l l=ll= Cgb pFedHR 94.26% 93.26% | 61.72% 59.23% | 54.38% 48.44%
=l = T E - FedAvg [4] 94.24%  92.16% | 83.26% 82.77% | 67.68%  58.92%
2 E|||5 |55 & |5/|2 |88 |8 FedProx [2] 94.22%  93.22% | 84.72%  83.00% | 71.24%  63.98%
s ol el o] 9] el |[© =l L= M Per-FedAvg [26] | 95.77% 93.67% | 85.99% 84.01% | 79.56%  76.23%
PFedMe [27] 95.71% 94.02% | 87.63% 85.33% | 79.88%  77.56%
PFedBayes [28] | 95.64% 93.23% | 88.34%  86.28% | 80.06%  77.93%
pFedHR 94.88% 93.77% | 89.87% 87.94% | 81.54% 79.45%

Wang et al. “Towards personalized federated learning via heterogeneous model reassembly.” 37th Conference on
Neural Information Processing Systems, 2023.

@ PennState




FedType

Public Data
Usage

Sensitive
Information
Exchange

Communication
Efficiency

PennState Wang et al. “Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity
Learning.” under review, 2024.
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@ PennState Wang et al. “Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity

Learning.” under review, 2024.
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Table 1. Performance (%) comparison under the heterogeneous cross-device settings.

Aggregation | Dataset FMNIST CIFAR-10 CIFAR-100
Method Heterogeneity | =1 a=05 a=01|a=1 a=05 a=01|a=1 a=05 a=0.1

FedTypegoa | 84.11 8393 8132 | 6640 6339 5817 | 3836 38.17 3545
FedAvg | FedTypepoy | 86.09  89.45  93.16 | 80.65 8257 8504 | 5624 61.06 6231
FedTypepive | 87.26 9122 9477 | 8256 8683 9190 | 5733 6569  68.14
FedTypegowa | 8696 8644 8429 | 6826 6586  63.75 | 41.88 3931  36.53
FedProx | FedTypepmoy | 87.03 9150  92.64 | 8219 8248 8780 | 5856 6122  62.64
FedTypepivae | 87.65 93.84 9498 | 83.69 8692 9203 | 59.18 6545  68.37
FedTypegora | 87.82 87.13 8586 | 68.71 6522 6495 | 4155 4092  38.60
pFedMe | FedTypepoy | 88.63 9205 9338 | 8264 8300  88.14 | 59.04 6268  64.89
FedTypepvae | 88.96 9236  94.86 | 8347 8724 9216 | 5978 67.07  69.51
FedTypegma | 8820 87.85 8604 | 6841 6687 6332 | 4373 4124 3872
pFedBayes | FedTypepor, | 89.69 9211 9329 | 8333 8449  89.10 | 5947 6296 6351
FedTypPepivae | 9026 93.17 9588 | 84.09 8867 9238 | 59.62 67.35  69.60

@ PennState Wang et al. “Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity

Learning.” under review, 2024.
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Communication efficiency analysis

@ PennState Wang et al. “Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity

Learning.” under review, 2024.




Model Heterogeneity

Enhance the performance of each client model
through collaborative learning without modifying client
model structures

5 Train a large
c N global model with
} ' heterogenous
§ A clients A
HeteroFL FedGH, pFedHR
FedRolex A
Sub- 7 7 A §
models S
of G @

Sub-model training (partial heterogeneity) Heterogeneous model aggregation (complete heterogeneity)
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Part 4

e Part 4. System Heterogeneity
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FedAsync

 Motivation

o Different clients may have different capabilities to process
and communicate.

o When handling massive edge devices, there could be a large number of
stragglers. The synchronous mechanism could be slow.

(OPT). 2020.

@ PennState Xie et al. “Asynchronous Federated Optimization.” 12th Annual Workshop on Optimization for Machine Learning



FedAsync
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4 Updater 0

@

€ = (1 — ap)Ti1 + 4Tpew

AN J

Server

Step O: scheduler triggers training through coordinator

Step 1-2: worker receives model z;—r from server via
coordinator

Step 3: worker computes local updates

Step 4-6: worker pushes the locally updated model to server
via the coordinator. Coordinator queues the models received
in 5, and feeds them to the updater sequentially in 6

Step 7-8: server updates the global model and makes it ready
to read in the coordinator

Step 1 and 5 operate asynchronously in parallel

Xie et al. “Asynchronous Federated Optimization.” 12th Annual Workshop on Optimization for Machine Learning
(OPT). 2020.




FedAsync

e Selected Results

80
80 .
seal W NEE BB RER NBR HAR DGR RER NER DER
75 “:"’60
9 Z
=70 = =
- FedAvg =1
~ = : .
% -‘- FedAsyne+Const, a=0.6 § 40 I Fe{'lﬁLh}?llc+CUIlht-
= 65 "- FedAsync+Const, a=0.9 : BN FedAsync+Poly, a=0.3
= = FedAsync+Poly, a=0.6 ﬁ, 90| ™M FedAsyncdPoly, a=0.5
7 60 FedAsync+Poly, a=0.9 BN FedAsync+Hinge, a=4, b=4
= == FedAsync+Hinge, a=0.6 N ,
5%5) v Fed Asynce+Hinge, a=0.9 B FedAsync+Hinge, a=10, b‘l
2500 5000 7500 10000 12500 15000 17500 20000 Average Staleness
# of gradients
. Figure 4: Top-1 accuracy on CNN and CIFAR-10 dataset at the end of training, with different
(a) Top-1 accuracy on testing set, t — 7 < 4 staleness. 7 = 0.1, p = 0.01. o has initial value 0.9.

CIFAR-10 dataset. Alpha is the hyperparameter, cons,
poly, and hinge are different weighting functions to Learning rate , Regularization weights
decide alpha_t.

@ PennState Xie et al. “Asynchronous Federated Optimization.” 12th Annual Workshop on Optimization for Machine Learning

(OPT). 2020.




SWIFT

e Motivation:

o Synchronous nature of current decentralized FL algorithms, communication time per round, and
consequently run-time, is amplified by parallelization delays. These delays are caused by the
slowest client in the network.

o Some exiting research work either do not propagate models well throughout the network (via
gossip algorithms) or require partial synchronization.

o These asynchronous algorithms rely on a deterministic bounded-delay assumption, which
ensures that the slowest client in the network updates at least every T iterations. This assumption
Is strong and worsen the convergence.

e Contribution: a novel wait-free decentralized FL algorithm that allows clients to
conduct training at their own speed.

Eleventh International Conference on Learning Representations (ICLR), 2023.

@ PennState Bornstein et al. “SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication.” The



Local Gradient Update Wait-Free Model Communication
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A SWIFT Overview. Each client ¢ runs SWIFT in parallel, first receiving an initial model z;,
communication set Cs, and counter ¢; <— 1. SWIFT is concisely summarized in the following steps:
(0) Determine client-communication weights w; '

(1) Broadcast the local model to all neighboring clients.

(2) Sample a random local data batch of size M.

(3) Compute the gradient update of the loss function ¢ with the sampled local data.

(4) Fetch and store neighboring local models, and average them with one’s own local model if ¢; € Cs.
(5) Update the local model with the computed gradient update, as well as the counter ¢; < ¢; + 1.
(6) Repeat steps (1)-(5) until convergence.

@ PennState Bornstein et al. “SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication.” The

Eleventh International Conference on Learning Representations (ICLR), 2023.
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(a) Average test loss. (b) Average train loss.

Figure 2: Baseline performance comparison on CIFAR-10 for 16 client ring.

@ PennState Bornstein et al. “SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication.” The

Eleventh International Conference on Learning Representations (ICLR), 2023.
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e Part 5: Conclusion and Future Work
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Core Challenges of Federated Learning

« Communication Efficiency
Server

* Privacy Concerns ' “

, | T

* Heterogeneity

* Data/Statistical Heterogeneity
‘) * Model Heterogeneity
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Multimodal Federated Learning
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Clienta Client b Client a Clientb

Horizontal Multimodal FL Vertical Multimodal FL

Figure 4. The illustration of Horizontal Multimodal Federated Learning and Vertical Multimodal
@ @ Federated Learning. Left: Horizontal Multimodal Federated Learning contains two clients. Both
hold image and text data. Right: Vertical Multimodal Federated Learning example contains two
/‘ \I / \\' clients with exclusive modalities. Client 2 has audio and video data, while client b holds heat rate
'/ ,\ / Tl and acceleration sensor data.
MEE T
Cis | |[CHES | [$em|| Q > D

(Mics/Keyboard) (Mobile Devices) (Smart Camera)

Identical data Identical data I Audio ! Video \l \
; modality and modality and s — o | Multimedia / /
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Figure 1. Illustration of traditional unimodal FL v.s. multimodal FL. Client o Client b Client Client b Client c

Multimodal Federated Transfer Learning Hybrid Multimodal FL

Figure 5. The illustration of Multimodal Federated Transfer Learning and Hybrid Multimodal
Federated Learning. Left: Multimodal Federated Transfer Learning contains two hospitals as clients.
One holds MRI and PET data, the other holds MRI and CT data. Right: Hybrid Multimodal Federated
Learning example contains three clients with different modality combinations. The system contains
both unimodal and multimodal clients.

@ PennState Che et al. "Multimodal federated learning: A survey." Sensors 23.15 (2023): 6986.




Fedmultimodal

Multimodal Applications
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Figure 1: The overall architecture of the end-to-end multimodal federated learning framework included in FedMultimodal.

@ PennState Feng et al. “Fedmultimodal: A benchmark for multimodal federated learning.” Proceedings of the 29th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 2023.




Fedmultimodal

Table 2: Overview of the 10 datasets included in FedMultimodal.

Validation Total

Task Dataset Partition Client Num. Modalities Features Metirc
Protocol Instance

MELD Natural 86 Audio, Text MFCCs, MobileBert Pre-defined 9,718

ER CREMA-D Natural 72 Audio, Video MFCCs, MobileNetV2 UAR 5-Fold 4,798
UCF101 Synthetic 100 Audio, Video MFCCs, MobileNetV2 6,837

MAR MiT10 Synthetic 200 Audio, Video MFCCs, MobileNetV2 Topl Pre-defined 41.6K
MiT51 Synthetic 2000 Audio, Video ~ MFCCs, MobileNetV2 Acc 157.6K

HAR UCI-HAR Synthetic 105 Acc, Gyro Raw F1 Pre-defined 8,979
KU-HAR Natural 66 Acc, Gyro Raw 5-Fold 10.3K

Health PTB-XL Natural 34 I-AVF, V1-Vé6 Raw F1 Pre-defined 21.7K
SM Hateful-Memes Synthetic 50 Image, Text MobileNetV2, MobileBert  AUC Pre-defined 10.0K
CrisisMMD Synthetic 100 ' MobileNetV2, MobileBert F1 Pre-defined 18.1K

@ PennState Feng et al. “Fedmultimodal: A benchmark for multimodal federated learning.” Proceedings of the 29th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 2023.




Domain-specific Federated Learning Systems

Dataset
Input (x)

e Healthcare
 FLamby

Preprocessing
Task type
Prediction (y)

Center extraction

Thumbnails

Fed-Camelyon16 Fed-LIDC-IDRI Fed-IXI Fed-TCGA-BRCA Fed-KITS2019 Fed-ISIC2019
Slides CT-scans Ti1WI Patient info. CT-scans Dermoscopy
Matter extraction . S . Various image
+ tiling Patch Sampling Registration None Patch Sampling i
binary . : . . multi-class
clagsification 3D segmentation =~ 3D segmentation survival 3D segmentation e e
Tumor on slide Lung Nodule Mask Brain mask Risk of death K'd"e?;lg?ﬁsmmm Melanoma class
1 Scanner 1 1 ; ;
Hospital Manufacturer Hospital Group of Hospitals  Group of Hospitals Hospital

C

‘& -

Fed-Heart-Disease
Patient info.
Removing missing
data

binary classification
Heart disease
Hospital

32,1,1950,2,0127.0,7122,1
34,14115,0,22,1540,21221
35,142020,130,1,22.273
3,14,110,0,20,125,1,1,2,26,1
38,0,4,105,0,2,0,166,0,28,1.2,2.2
38,04,110,0,0,0,156,0,0223,1
38,1,3,100,0,20,179,0,-1.1,1.220
38,1,3,115,0,0,0,128,1,0,227,1
38,1:4,135,0,20,1500,0.2,2.3.2

. . Tschandl et al. 2018/ :
Original paper thjengoﬁts al. Armatz% 1e£ al. Perez2 Oezt 1&!. Li uzgg gi. Helleg 0511‘ :!. Codella et al. 2017 / J.a\na?I |ge58r8 al.
Combalia et al. 2019
i 2 4 3 6 6 6 4
I # examples 399 1,018 566 1,088 96 23, 247 740
# examples per 311, 1986, 206, 162 12,14,12,12, 12413, 3954, 3363, 225
. " 239, 150 670, 205, 69, 74 311,181, 74 162, 51 16, 30 819, 439 303, 261, 46, 130
How to train FL Model DeepMIL [64] Vnet [98, 100] 3D U-net [22] Cox Model [30] nnU-Net [67] efficientnat |2;e€:] Logistic Regression
mOdels With |imited Metric AUC DICE DICE C-index DICE Balanced Accuracy Accuracy
number Of data,? Size 50G (850G total) 115G 444M 115K 54G 9G 40K
= . . ~1.0x1.0x 1.0 ~1.0x1.0x1.0 ~1.0x1.0x1.0 .
Image resolution 0.5 pum / pixel B Ce e NA - ~0.02 mm / pixel NA
Input dimension 10, 000 x 2048 128 x 128 x 128 48 x 60 x 48 39 64 x 192 x 192 200 x 200 x 3 13

@ PennState

Terrail et al. "FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings." Advances in
Neural Information Processing Systems, 2022.




Foundation Models + Federated Learning

Sensor

 How to use foundation models to
enhance client learning?

e Can we train a foundation model
with federated learning?
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arXiv:2306.15546, 2023.
Lu et al. "FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning." IEEE Data Engineering Bulletin 2023.

Zhuang et al. “When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions.”
@ PennState




Other Federated Learning Settings

©> ), Doy

Supervised Semi/weakly-Supervised Unsupervised
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pFedKnow (Semi-supervised FL)

Knowledge Enhancement Learning
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@ PennState Wang et al. "Knowledge-enhanced semi-supervised federated learning for aggregating heterogeneous lightweight clients in loT."

Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). 2023.




Thank You.

Any questions, please feel free contact Jiaqi Wang or Fenglong Ma
via jgwang@psu.edu or fenglong@psu.edu

@ PennState
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